Analysis of low-concentration gas samples with continuous-flow isotope ratio mass spectrometry: eliminating sources of contamination to achieve high precision.
نویسندگان
چکیده
Developments in continuous-flow isotope ratio mass spectrometry have made possible the rapid analysis of delta13C in CO2 of small-volume gas samples with precisions of < or = 0.1 per thousand. Prior research has validated the integrity of septum-capped vials for collection and short-term storage of gas samples. However, there has been little investigation into the sources of contamination during the preparation and analysis of low-concentration gas samples. In this study we determined (1) sources of contamination on a Gasbench II, (2) developed an analytical procedure to reduce contamination, and (3) identified an efficient, precise method for introducing sample gas into vials. We investigated three vial-filling procedures: (1) automated flush-fill (AFF), (2) vacuum back-fill (VBF), and (3) hand-fill (HF). Treatments were evaluated based on the time required for preparation, observed contamination, and multi-vial precision. The worst-case observed contamination was 4.5% of sample volume. Our empirical estimate showed that this level of contamination results in an error of 1.7 per thousand for samples with near-ambient CO2 concentrations and isotopic values that followed a high-concentration carbonate reference with an isotope ratio of -47 per thousand (IAEA-CO-9). This carry-over contamination on the Gasbench can be reduced by placing a helium-filled vial between the standard and the succeeding sample or by ignoring the first two of five sample peaks generated by each analysis. High-precision (SD < or = 0.1 per thousand) results with no detectable room-air contamination were observed for AFF and VBF treatments. In contrast, the precision of HF treatments was lower (SD > or = 0.2 per thousand). VBF was optimal for the preparation of gas samples, as it yielded faster throughput at similar precision to AFF.
منابع مشابه
Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane
We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS) technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve switching. Chemical agents are avoided. Trace amounts of interfering compounds can be separated ...
متن کاملContinuous flow 2H/1H and 18O/16O analysis of water samples with dual inlet precision.
A method for isotope ratio analysis of water samples is described comprising an on-line high-temperature reduction technique in a helium carrier gas. Using a gas-tight syringe, injection of 0.5 to 1 microL sample is made through a heated septum into a glassy carbon reactor at temperatures in excess of 1300 degrees C. More than 150 injections can be made per day and both isotope ratios of intere...
متن کاملLiquid chromatography/mass spectrometry stable isotope analysis of dissolved organic carbon in stream and soil waters.
A commercial interface coupling liquid chromatography (LC) to a continuous-flow isotope ratio mass spectrometry (CF-IRMS) instrument was used to determine the δ(13) C of dissolved organic carbon (DOC) in natural waters. Stream and soil waters from a farmland plot in a hedgerow landscape were studied. Based on wet chemical oxidation of dissolved organics the LC/IRMS interface allows the on-line ...
متن کاملQuantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuous-flow isotope-ratio mass spectrometry
RATIONALE We describe an analytical procedure that allows sample collection and measurement of carbon isotopic composition (δ(13)C(V-PDB) value) and dissolved inorganic carbon concentration, [DIC], in aqueous samples without further manipulation post field collection. By comparing outputs from two different mass spectrometers, we quantify with the statistical rigour uncertainty associated with ...
متن کاملGC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons.
Stable isotopic characterization of chlorine in chlorinated aliphatic pollution is potentially very valuable for risk assessment and monitoring remediation or natural attenuation. The approach has been underused because of the complexity of analysis and the time it takes. We have developed a new method that eliminates sample preparation. Gas chromatography produces individually eluted sample pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Rapid communications in mass spectrometry : RCM
دوره 23 23 شماره
صفحات -
تاریخ انتشار 2009